Fundamentals of Catastrophe Modeling

Presented to the Coastal Hazards Commission

Karen M. Clark President & CEO AIR Worldwide Corporation

June 30, 2006

www.air-worldwide.com

About AIR



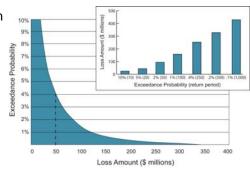
- □ AIR Worldwide was founded in 1987 as the first catastrophe modeling company
- □ Pioneered the development and application of probabilistic catastrophe loss estimation methodology that is now the standard technology for global risk assessment and management
- □ AIR models and software systems cover natural hazards in more than 50 countries, as well as terrorism in the U.S.
- Advanced scientific techniques help clients assess and manage catastrophe, weather and climate risk
 - > Over 400 insurer, reinsurer, intermediary, and corporate risk manager clients
 - Research-oriented clients include Earthquake Engineering Research Institute, Pacific Earthquake Engineering Research Center, Los Alamos National Labs
 - > Government clients include USDA, USGS, US Dept. of Homeland Security
- Offices in Boston, San Francisco, London, Hyderabad, Munich and Beijing

AIR Technical Staff

© 2005 AIR Worldwide Corporation

History of Catastrophe Modeling

How Insurance Companies Utilize Catastrophe Model Output

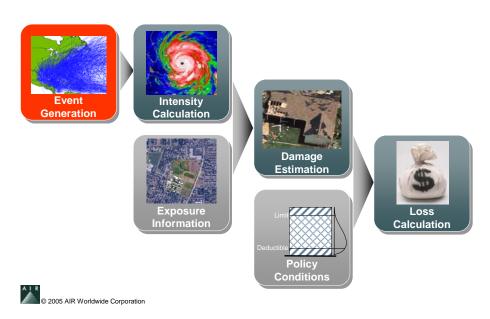

- □ Risk assessment and transfer
 - Estimating complete probability distributions of loss, including large loss potential
 - > Analyzing additional risk transfer options, such as catastrophe bonds, etc.
 - > Analyzing various reinsurance options
- Underwriting enhancement
 - > Estimating losses down to the individual policy level for risk selection
 - > Evaluating the impact of changing policy conditions, such as deductibles
 - > Developing underwriting guidelines that account for catastrophe risk
- Pricing adequacy
 - > Performing ratemaking analyses to develop loss costs in risk-prone areas
 - Evaluating impacts of various mitigation devices for the development of appropriate credits
- Portfolio management
 - Developing portfolio growth strategies to determine allocation and reserving of capital
 - Performing optimization studies to identify policies that contribute the most to portfolio PML

AIR Catastrophe Modeling Approach

- AIR catastrophe loss estimation methodology uses statistical and physical simulations to generate a large enough sample of potential future loss experience
- Fundamental physical characteristics of catastrophe events expressed mathematically
- Superimposed on current building stock
- Model results are expressed as a distribution of probabilities, or the likelihood of various levels of loss

What Questions are Catastrophe Models Designed to Answer?

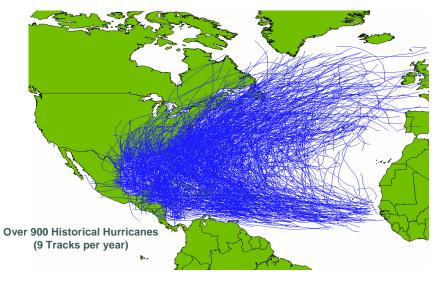
- □ Where are future events likely to occur?
- ☐ How big are they likely to be? How frequently are they likely to occur?
- □ For each potential event, what will be the property damage and insured losses? What will be the number of people injured?


AIR Hurricane Model for the U.S.

www.air-worldwide.com

Catastrophe Modeling Framework

Event Generation



- ☐ Thousands of 'scenario years' are simulated to produce a large stochastic storm catalog of landfalling and bypassing events for full spatial coverage and stable results
- □ For each scenario year, the model generates the number of hurricanes that occur that year
- □ For each simulated hurricane, parameter values are assigned probabilistically
 - > Landfall location
 - > Minimum central pressure
 - > Radius of maximum winds
 - > Forward speed
 - > Track angle at landfall
 - > Track direction at each time step

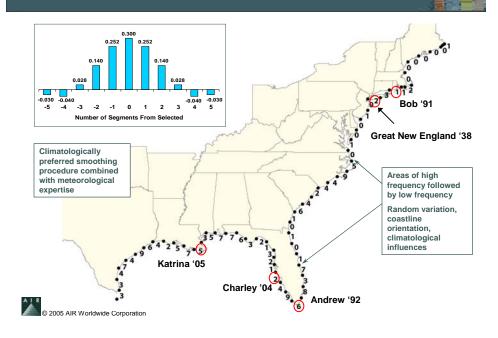
North Atlantic Tropical Cyclones Since 1900

Historical Data on Hurricanes

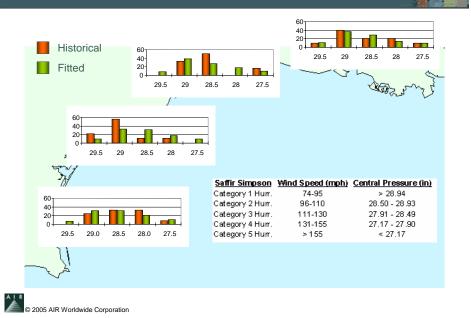
Wind Speed and Central Pressure Along Storm Track

Date/Time (UTC)	Position Lat.(*N) Lon	Press (*W) (mb		St	Stage		
16/1800	10.8 3	5.5 101	0 25	Tropical	Depression		
17/0000		7.4 100	9 30				
0600		9.6 100	8 30		-		
1200		2.0 100	6 35	Tropica	1 Storm		
1800		4.2 100	3 35	""			
18/0000		6.2 100		"	**		
0600		8.0 100			**		
1200		9.9 100					
1800		1.8 100					
19/0000		3.5 100					
0600		5.3 100			**		
1200		6.9 100					
1800		8.3 2 100					
20/0000		9.3 101		-	**		
0600		0.0 101		-	**		
1200		1.5 101					
1800		2.4 101					
21/0000		3.3 101					
0600		4.2 100			-		
1200		4.9 100			**		
1800					**		
22/0000					"		
1200		7.0 99 8.3 98		Hurr	icane		

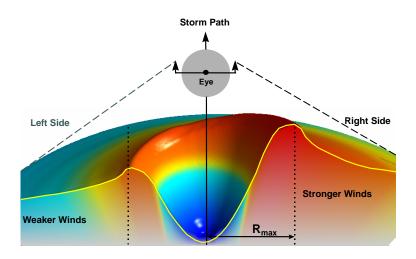
Detailed Landfall Characteristics


		Central Pressure		RMax		Forward Speed		Max Wind Speed	
Hurricane	Date	(in)	(IdPa)	n.mi	lem.	let	km/hr	let	Km*/hr
Galveston	9/9/00	27.64	93.6	14	26	10	18	77	143
Central Gulf	9/13/19	27.99	94.8	32	39	10	18	91	167
New England	9/21/38	27.76	94.0	50	93	40	24	85	1.58
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•			•		•
Helene	9/27/58	27.52	93.2	20	32	14	26	93	176
Donna	9/11/60	28.67	97.1	34	63	20	37	85	1.58
Carla	9/10/61	27.61	93.5	20	37.1	8	15	104	193

Sources: National Oceanic and Atmospheric Administration, National Hurricane Center, US Army Corps of Engineers, National Weather Service, National Climatic Data Center

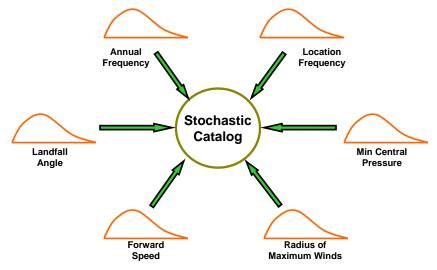


of Engineers,© 2005 AIR Worldwide Corporation


Hurricane Landfalls by Location


Estimating Storm Intensity by Landfall Location

Radius of Maximum Winds (Rmax) Key Driver of Storm Size

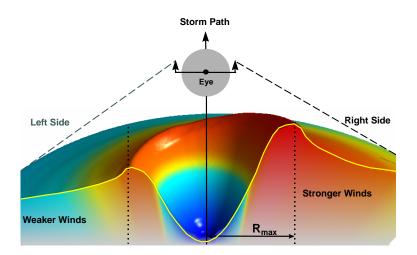


Stochastic Catalog Generated from Distributions of Important Storm Characteristics

Stochastic Hurricane Catalog

- AIR's hurricane catalog contains storm parameters for each event in a given vear
- Catalog methodology facilitates straight-forward modeling of multi-event seasons

		_											
Year	Event	Day	LF	SS	LF	CP	Max Wind	Landfall	Landfall	Radius	Forward	Landfall	
	ID		Num		Seg		Speed	Lat	Long	Max Wind	Speed	Angle	
1	1	280	1	1	7	984	80	28.291	-96.492	12	15	20	
3	2	231	1	3	22	963	113	29.472	-83.236	11	14	23	
4	3	269	1	2	43	979	96	34.891	-76.420	13	23	32	
4	4	230	1	2	5	969	102	27.048	-97.297	12	19	45	
5	5	285	1	2	4	975	97	26.002	-97.160	14	18	34	
8	6	289	1	4	10	944	132	29.689	-93.713	9	20	18	
8	7	204	1	1	39	987	76	32.937	-79.563	16	18	19	
8	8	245	1	3	30	957	114	25.952	-80.131	12	16	23	
11	9	290	1	2	43	979	98	34.930	-76.330	18	16	20	
٠													
٠	٠	•		٠	٠				•		•	•	
											_		

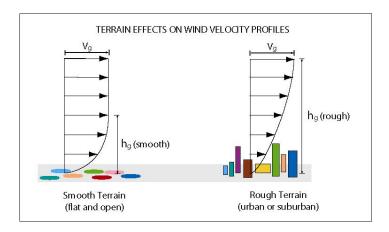

Local Intensity Calculation

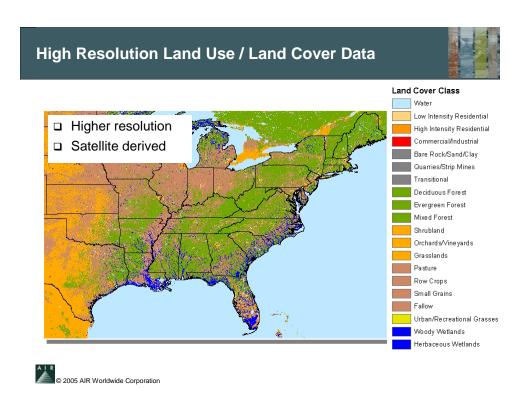
Windfield Cross Section

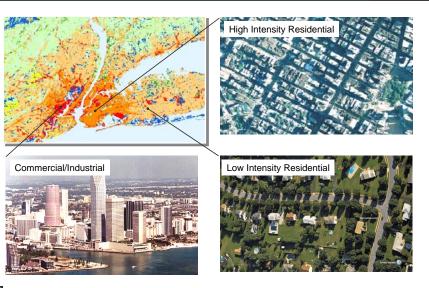
Simulated Windfield Requires Calculations Using Meteorological Variables


$$\begin{split} V_{1 \min, 10 m}(t, r > R, z_0) &= \\ (fr(z_0)) \left\{ gf(z_0, t_{tav}) \Big(c_1 e^{-t^{-2}} \left(c_3 \left[\sqrt{\frac{1}{\rho} e} (P_w - P_0) - \frac{Rf}{2} \right] \left[c_4 + c_5 \ln(c_6 R) + (c_7 + c_8 \ln(c_6 R)) \ln(c_6 r) \right] \right) + 1.5 T^{c_9} T_0^{c_{10}} \cos(\beta) \right\} \end{split}$$

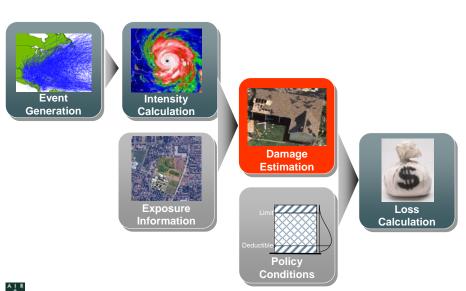
- □ Difference between minimum central pressure and peripheral pressure
- □ Coriolis parameter, dependent on latitude
- □ Air density coefficient, dependent on latitude
- Radius of maximum winds
- □ Storm's forward, or translational, speed
- □ Radial distance from storm center to location
- □ Angle between track direction and surface wind direction
- □ Storm inflow angle
- □ Wind gust factor as a function of surface roughness and averaging time
- □ Air density factor


Wind Speed Profiles Derived from Historical Data


Terrain Effects on Wind Velocity Profiles

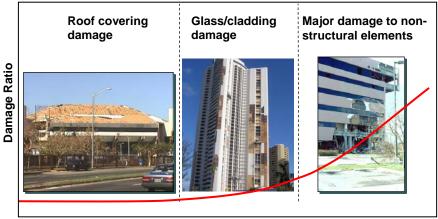

Sources: Simiu and Scanlan "Wind Effects on Structures", N. Cook "The Designers Guide to Wind Loading of Building Structures. Part 1.", ESDU Engineering Sciences Data "Wind Engineering.", etc.

Examples of High Resolution Land Use Data



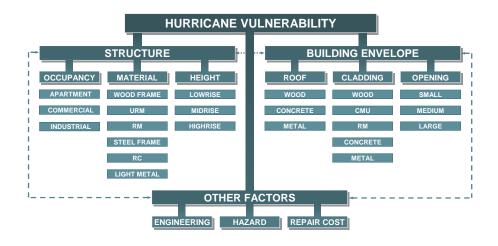
Damage Estimation

Damage Function - Residential Wood Frame



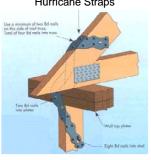
Wind speed

Damage Function - Reinforced Concrete and Steel Frame

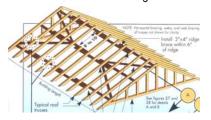


Wind speed

Hurricane Component Vulnerability Model

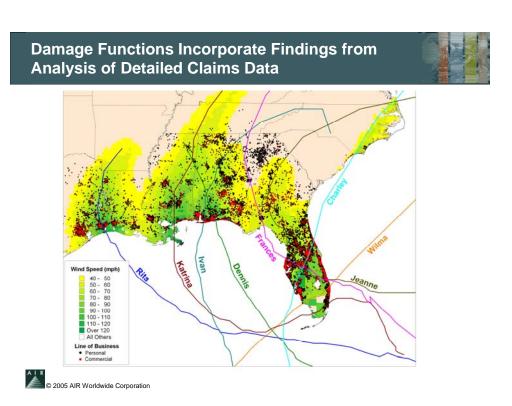

Specific Building Characteristics and Mitigation

110 mph rated Shingles

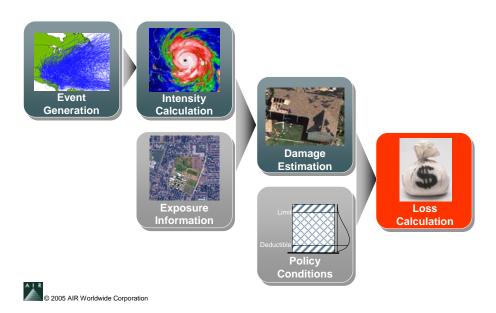


Hurricane Straps

© 2005 AIR Worldwide Corporation

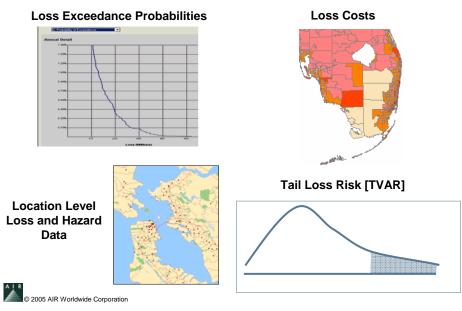

Gable-end Bracing

Hurricane Shutters/Impact-Resistant Glazing



Catastrophe Modeling Framework

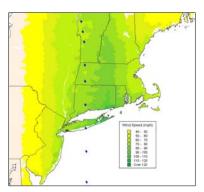
Complex Policy Conditions Captured by the Model


Lim	its	Deduct	ibles	Reinsurance*		
Location	Policy	Location	Policy	Location	Policy	
Site Limits	Blanket Policy Limits	Combined (\$ or %)	Attachment Point	Proportional Facultative	Proportional Facultative	
Coverage Specific Limits	Excess Policy Limits	Combined Excluding Time (\$ or %)	Blanket	Non- Proportional Facultative	Non- Proportional Facultative	
Building	Blanket Policy Sub-Limits	Coverage Specific (\$ or %)	Franchise	Surplus-Share	Surplus-Share	
Appurtenant Structures	Excess Policy Sub-Limits	Building	Minimum / Maximum			
Contents		Appurtenant Structures	Percent of Loss			
Time Element		Contents				
		Time Element				
		CEA Mini-Policy				

^{*} Catastrophe Excess of Loss, Aggregate Excess of Loss, Quota Share, Surplus Share, and Per Risk Treaties are also available for application to the entire portfolio

Catastrophe Models Provide a Wide Range of Outputs

Historical Hurricane Activity in New York and New England



□ Since 1900, eleven hurricanes have made a direct hit on New England, six on the New York coastline

The Great New England Hurricane of 1938

- □ The Great New England Hurricane was one of the most destructive storms ever to hit the northeast
 - > A central pressure of 946 mb, consistent with a very strong Category 3 hurricane, was reported at Bellport, NY
 - Maximum sustained winds of 121 mph were reported at Block Island
 - A peak gust of 186 mph was recorded at the Blue Hill Observatory in Massachusetts
 - Storm surge of 10 12 ft inundated the coasts of Long Island, Rhode Island, Connecticut, and southeastern Massachusetts
- □ The storm was traveling at a forward speed of 50 miles per hour, bringing hurricane force winds far inland

AIR modeled wind speeds for the 1938 storm

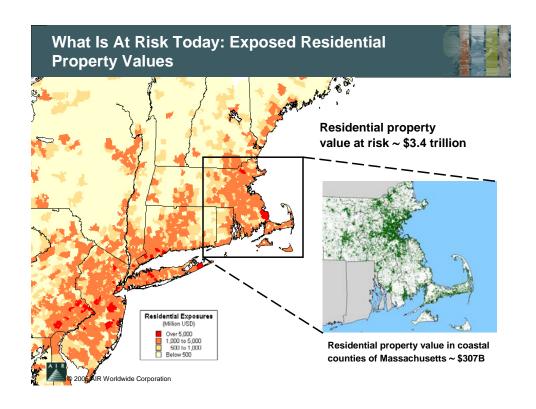
Damage from The Great New England Hurricane

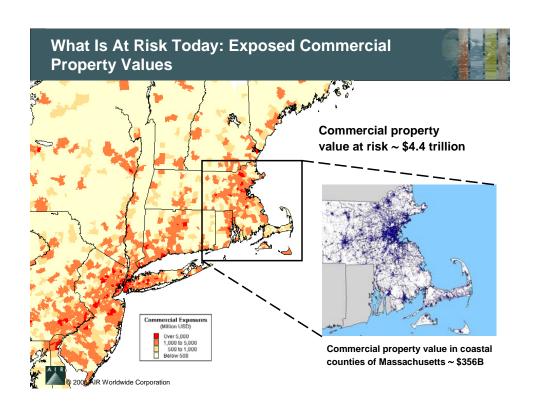
- Significant structural damage occurred as far inland as Worcester, MA
- □ Approximately two billion trees were destroyed
- Thousands of buildings were destroyed and, in some cases, entire coastal communities disappeared
- ☐ The fishing industry was decimated, with about some 5,000 boats damaged or destroyed
- □ 700 fatalities; 63,000 left homeless

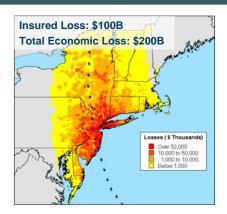
Source: Prof. Nicholas K. Coch

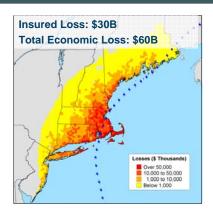
What Has Changed Since 1938

 The number of single family homes has tripled; total value is 13 times higher

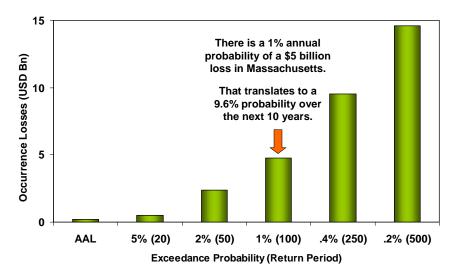



Population has increased by 80%


Mean sea level has risen by 6 inches

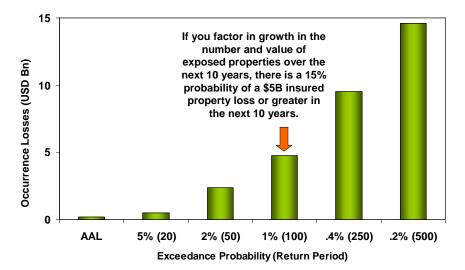


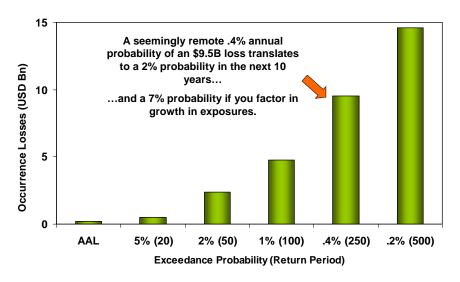
How Large Can the Losses Be?


- Even a strong Cat 3 or weak Cat 4 could cause over \$100 B in loss in the densely populated Northeast
- Lower Manhattan and Long Island would experience significant damage from flooding to properties and infrastructure
- © 2005 AIR Worldwide Corporation

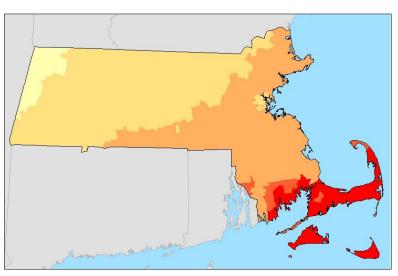
- Category 3/4 hurricane would push water into both Narragansett and Buzzards Bay, causing extensive flooding
- Wind damage and power outages would be widespread

How Large Can the Losses Be in Massachusetts?



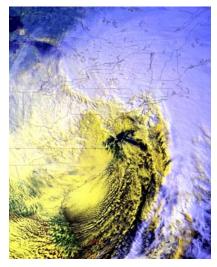

© 2005 AIR Worldwide Corporation

How Large Can the Losses Be in Massachusetts?



How Large Can the Losses Be in Massachusetts?

© 2005 AIR Worldwide Corporation


Relative Hurricane Risk for Residential Properties in Massachusetts

Winter Storm Risk

- □ Blizzard of '78
- □ The Storm of the Century ('93)
- □ Blizzard of '97
- □ Blizzard of 2003

Summary

- ☐ While the frequency is low, New England and Massachusetts are exposed to major losses from hurricanes and winter storms
- ☐ The risk is increasing—driven primarily by the increase in the number and value of exposed properties
- ☐ There is a 15% probability that Massachusetts will experience a \$5 billion insured loss, or greater, in the next 10 years

